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The problem of treating open boundaries is still a challenging one. Applying fully devel-
oped condition is constrained to long enough domains. Without having enough physical
evidence about what happens on boundaries, the domain extent could not be shortened
and computational costs could not be reduced. From the advent of free (open) boundary
conditions, they were confined to mixed finite element procedures. Recent works have
extended their application to coupled finite volume solvers based on the shape function
data reconstruction. A wider class of flow solvers available, however, rely on the segre-
gated procedure where the velocity components and pressure are solved in succession.
Moreover, many finite volume algorithms do not use the shape function reconstruction.
In this work, by proposing a lagged implicit procedure, we have extended the application
of the open boundary condition to these wider classes of flow solvers. The proposed
extension is a combination of lagged implicit data reconstruction and overall mass con-
servation enforcement, which is easily applicable to any segregated and coupled flow sol-
ver. To validate the compatibility of this extension, benchmark problem of backward
facing step is solved on successively truncated domains, where open boundary may pass
through recirculation zones. Results show that the proposed extension works fine. For
that problem, it reduced the computational domain length (and hence memory) by a fac-
tor of 4.6 and the required computational time by a factor of 21. Flow passing a cylinder
is also solved which proves that the method could be applied to external flow problems
as well.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

To solve an incompressible flow problem, one needs to extend the computational domain to locations where the flow
properties could be found from physical evidence. For example, in a duct flow, the physical evidence shows that for a long
enough computational domain, the real world flow is fully developed. Unfortunately, a long enough computational domain is
an expensive one. Assume that there exist an artificial boundary condition which when applied to a shorter domain, gener-
ates approximately the same result as the long enough domain with fully developed condition does, at least in the domain of
interest. Hereafter, we call such a boundary condition an open boundary condition (OBC). Using this OBC, the computational
costs could be reduced while the accuracy is not sacrificed.

One of the primitive OBCs for internal flow is the fully developed condition, which is based on the physical evidence and
needs a long enough computational domain to generate accurate results. More advanced OBCs include those based on a
. All rights reserved.
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Fig. 1. Different problems which have zone A in common. Their solution in that zone is virtually the same.
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hybrid coupling of discretization method with an infinite element [1] or boundary element method [2]. Non-reflecting
boundary conditions are devised to absorb waves incident on the boundary. This type reduces to the fully developed flow
for steady state problems. A good review on the convective boundary conditions is given by Jin and Braza [3]. Another
way to absorb noises from the boundary is to attach a buffer layer to the computational domain, as proposed by Liu and
Lin [4]. The method provides damping to attenuate spurious noises from the boundary. Johansson [5] and Halpern and
Schatzman [6] linearized Navier–Stokes equations about the solution at far downstream (which was a constant flow) and
used analytical Laplace–Fourier technique to solve these simplified equations and suggested a set of boundary condition
at the outlet.

Constant pressure condition which may be applied at the far-field to external flow problems (e.g. used by Manzari [7]) is
not well suited to the internal flow ones, because it needs a priori information about the pressure loss which is usually un-
known. Moreover, it requires long enough computational domain for the streamlines to become parallel. Gartling [8] used
constant total normal stress and parallel flow boundary conditions at the outlet to study the backward facing step problem.
Traction (stress) free boundary condition assumes that viscous and pressure stresses are in balance (�p + (1/Re)@u/@x = 0)
and the transverse velocity does not change normal to the boundary (@v/@x = 0). Sani and Gresho [9] used natural boundary
conditions (�p + (2/Re)@u/@x = 0 and @u/@x + @v/@y = 0) which allows traction on the boundary. Recently, Liu [10] used
m@n~u� p~n ¼~g and mð~r~uþ ð~r~uÞTÞ~n� p~n ¼~g, respectively as open and traction boundary conditions in his finite element
work. His numerical method was based on the Pressure Poison Equation (PPE) formulation. Fournier et al. [11] used the
approximate boundary layer equations as the governing equations on the outflow boundary for wall-bounded flows.

Originally, Papanastasiou et al. [12] introduced free boundary condition in the context of mixed finite element methods.
The idea was based on evaluating the weak formulation integrals on the boundaries, using finite element shape functions
instead of evaluating them with essential (Dirichlet) or natural (Neumann) conditions. This is equivalent to extending the
validity of the weak form of the governing equations to the synthetic outflow, instead of replacing them with unknown
essential or natural boundary conditions. Using this idea, they were able to reduce the length of the computational domain
for the backward facing step problem at Re = 800, from 35 units to 7 units, without appreciable adverse effect upstream.
Wang and Sheu [13] implemented a similar idea by an implicit traction evaluation procedure based on the mixed finite ele-
ment formulation. In their work, traction on the outlet boundary was related to the velocity and pressure distribution inside
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Fig. 2. Steady upstream and unsteady downstream flow pattern corresponding to the problem defined in Fig. 1b.
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the domain. Using finite element shape function, this dependence was discretized and the resulting equations were used in
the flow equation system. This way, they linked the conditions on the outlet boundary to the internal distribution of the vari-
ables. Using this, they were able to reduce the required computational domain length from 33 units to 10 units. In both
works, the convergence rate was not deteriorated by this implicit domain-boundary coupling.

Griffith [14] by studying a much more simplified one-dimensional conduction problem, concluded that using the above
free boundary condition in finite element method of degree p is equivalent to setting the (p + 1)st derivative of the variable at
the outflow equal to zero.

Although many of the OBCs discussed above were used in finite volume methods, the idea of Papanastasiou et al. [12] had
no finite volume counterpart. Their idea is interesting since it essentially extends the validity of the discretized governing
equations to the boundary. Currently Darbandi et al. [15–17] applied and successively improved the application of this type
of open boundary condition in their co-located pressure based coupled finite volume procedure. In essence, they have devel-
oped a coupled finite volume procedure based on the finite element shape function data reconstruction and have applied free
boundary condition in an implicit fully conservative manner. As with the mixed finite element counterparts, their finite vol-
ume work was subject to two constraints to be applicable to most of the finite volume solvers. Firstly, the finite element
shape function data reconstruction tool is not available in a majority of finite volume solvers. Secondly, most of the finite
volume solvers use the segregated procedure to economically solve flow systems.

In this work, we describe a lagged implicit segregated data reconstruction procedure to treat open boundaries. The main
idea is to use a shape function independent data reconstruction. Then this data reconstruction is applied in a lagged implicit
segregated manner to segregate the coupling between the primitive variables over the open boundary. This way the pro-
posed method could be applied to any segregated finite volume solver. The proposed procedure is equally applicable to cou-
pled solvers without shape function tool. This type of OBC, like the work of Darbandi et al. [17] and Papanastasiou et al. [12],
is suitable to study upstream domains of interest in problems whose physics show that the solution in that domain is not
highly affected by the downstream events. One of such problems is shown in Fig. 1(b). More quantitatively, assume that
our zone of interest is the upstream part of the domain extended seven channel heights from the step. This is evident from
Figs. 4–6 that the solution to the problem defined by Fig. 1(b) is essentially in close match to that of the backward facing step
problem defined in Fig. 1(a) in zone A. This is true despite the fact that the solution to the first problem never reaches to a
steady state in the downstream diffuser (Fig. 2).

To give the reader an insight, segregated solution procedure is summarized in Section 2. The data reconstruction proce-
dure is detailed in Section 3. Governing equations and their discretization are presented in Section 4. In Section 5, the details
of enforcing overall mass conservation for the segregated solver is presented. Then in Section 6, the implicit reconstruction
treatment for open boundaries which makes segregated application possible is described. Using these tools in Section 7, the
open boundary is applied to the benchmark backward facing step problem at Re = 800. Results are in good agreement with
previous works on open boundaries which needed shape function reconstruction and coupled FVM or mixed FEM solvers. To
show that the same method works fine in external flow problems, flow passing a circular cylinder at Re = 200 and 1000 is
solved in Section 8.
2. Segregated solution procedure

The segregated solution procedure is:

1. Using the last available (or initial) values of pressure and velocity, find face mass fluxes (Eq. (16)).
2. Extrapolate the pressure to ghost cells using Eq. (1), c.f. Section 6.
3. Solve the discretized momentum equations, component after component, with the above mass fluxes and the last avail-

able pressure field.
4. Update the mass fluxes using currently updated velocity field, enforce the overall mass balance and compute the right

hand side of the pressure correction equation (Eq. (22)).
5. Solve the pressure correction equation and update the mass fluxes, pressure and velocity fields.
6. If pressure and velocity fields are not converged, repeat from step 2.
7. Advance in time and repeat from step 2.

Boundary conditions are applied when assembling momentum and pressure correction equations (steps 3 and 5).
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3. Data reconstruction procedure

Computational fluid dynamics is a tool to approximate the behavior of continuous fluid systems by reducing their infinite
degrees of freedom to some finite affordable degrees of freedom. This is usually done by finding approximation to the solu-
tion in some finite number of space and time locations. If an approximation to the solution for other space/time locations is
sought, some kind of data reconstruction (interpolation) is used. The natural tool for this purpose in finite element method is
shape function reconstruction [18]. In unstructured finite volume methods there are two schools of thought. One way is
using the shape function tool as in finite element method, e.g. [17,19]. The other is based on interpolation using the neigh-
boring points where approximate data are available (usually with distance weighting).

One common way to reconstruct data without shape function, is to find some approximation to the gradients. Then inter-
polation in the neighborhood of the cell center~rP0 is simply carried out by
/ð~rÞ � /P0
þ ð~r/ÞP0

� ð~r �~rP0Þ ð1Þ
which is valid to second order. Least square procedure could be used to evaluate the gradient [20]. Since Eq. (1) is valid near
~rP0 , it gives / at its neighbors,~rPj

, as
/Pj
¼ /P0

þ ð~r/ÞP0
� ð~rPj

�~rP0 Þ ¼ /P0
þ ð~r/ÞP0

�~dj: ð2Þ
Rearranging for the gradient gives:
ð~r/ÞP0
�~dj ¼ /Pj

� /P0
: ð3Þ
This is always an over determined system of equations for gradient components since in three (two) dimensions there are at
least four (three) neighbors for each cell but three (two) components of the gradient are to be solved for. Following the stan-
dard least square procedure, the gradient components could be obtained as:
ð~r/ÞP0
¼ D�1

X
j

dT
j ð/Pj

� /P0
Þ; ð4Þ
where, j runs over all of the neighbors of P0; d
T
j is the single column notation for~dj and D is a symmetric three by three (two

by two in 2D) geometry-dependent matrix defined as:
D ¼
X

j

dT
j dj ¼

a b c

b d e

c e f

2
64

3
75: ð5Þ
The inverse of D is computed analytically as:
D�1 ¼ 1

adf þ 2bce� ae2 � dc2 � fb2

df � e2 ce� bf be� cd

ce� bf af � c2 bc � ae

be� cd bc � ae ad� b2

2
64

3
75: ð6Þ
These give:
/ð~rÞ � /P0
þ D�1

X
j

dT
j ð/Pj

� /P0
Þ

 !
� ð~r �~rP0Þ ¼ w0ð~rÞ/P0

þ
X

j

wjð~rÞ/Pj
ð7Þ
in which wjð~rÞ ¼ D�1dT
j � ð~r �~rP0 Þ and w0ð~rÞ ¼ 1�

P
jwjð~rÞ. This is effectively a weighted data reconstruction method.

4. Governing equations and their discretization

For the incompressible flow, the continuity and momentum equations are:
Z
X
q~V � d~A ¼ 0; ð8Þ

@

@t

Z
X
q/dV þ

Z
C

/ðq~V � d~AÞ ¼ Sp þ
Z

C
D/

@/
@n

dAþ S/; ð9Þ
where / could be any transported scalar including velocity components (u, v, w) and Sp represents the pressure term which is
only applicable to the momentum equations as:
~Sp ¼ �
Z

C
pd~A: ð10Þ
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Although the methods presented here on treating open boundaries, do not depend on any particular discretization scheme,
for the sake of clarity, we follow with discretizing these equations on a co-located cell centered polyhedral grid by a second
order implicit finite volume method.

For integration in time, we follow the implicit second order three time levels method. The unsteady equations are sym-
bolically rewritten as:
dy
dt
¼ H; ð11Þ
where y represents the volume integral in Eq. (9) and H contains all other terms. Discretization gives:
3yn � 4yn�1 þ yn�2

2Dt
¼ dy

dt

� �n

þ OðDt2Þ ¼ Hn þ OðDt2Þ: ð12Þ
Applying the above time discretization, Eq. (9) could be discretized in space for a polyhedral cell, P0, having Nj faces to:
aP0 /P0
þ
XNj

j

aPj
/Pj
¼ bP0 ð13Þ
in which aP0 ; aPj
and bP0 carry the effects of implicitly discretized integrals. The volume integrals are discretized to second

order using the mid-point rule:
Z
DVP0

wdV � wP0
DVP0 : ð14Þ
Convection surface integrals are discretized using the same rule as:
Z
j

/ðq~V � d~AÞ � _mj/j; ð15Þ
where j represents the face center. To avoid pressure checker-boarding, the mass flux in Eq. (15) is obtained from the stan-
dard Rhie-Chow [21] (momentum based) interpolation between cells P0j

and P1j
, which have face j in common as:
unj
¼

_mj

qAj
¼ ð~uÞj � n̂j þ

DV
a0

dP
dnj

� �
j �

DV
a0

� �
j

dP
dnj

� �
j

; ð16Þ
where ð�Þj means any interpolation to the face center, like CDS, a0 is the main diagonal element in the discretized momentum
equation of the corresponding cell and d(�)/dn is the discretized face normal derivative operator. To find an approximation to
/j for Eq. (15), any upwind scheme could be used. Here, the second order upwind (SOU) interpolation is used. First, using the
mass flux, the upwind cell, PU, is found. Then using /PU

and its gradient (c.f., Section 3), face center value is approximated to
second order as:
/j � /PU
þ ð~r/ÞPU

� ð~rj �~rPU Þ: ð17Þ
Diffusion surface integrals are discretized using
Z
j

D/
@/
@n

dA � D/
d/
dnj

Aj: ð18Þ
To approximate the normal derivative, virtual points are used. The virtual point in cell P0 related to face j is defined as the
normal projection of the cell center on the face normal:
~rP00
¼~rj þ ½n̂j � ð~rP0 �~rjÞ�n̂j; ð19Þ
where n̂j is the unit normal vector of the face j (Fig. 3). The virtual point in cell P1 is defined as the mirror image of the virtual
point in P0 with respect to the common face. The line connecting virtual points P00 and P01 is orthogonal to the face and passes
through the face center. Therefore, to second order,
d/
dnj
�

/P01
� /P00

j~rP01
�~rP00

j ; ð20Þ
where values at virtual points are obtained using gradient based interpolation, e.g. /P00
� /P0

þ ð~r/ÞP0
� ð~rP00

�~rP0 Þ.
Continuity equation is used with SIMPLE algorithm to derive the pressure correction equation. For this algorithm, cur-

rently available velocity components and pressure are assumed to be predictions to the correct values, requiring a set of cor-
rections which are related to each other as:
~u0P0
� �DVP0

a0
ð~dP0ÞP0

; ð21Þ



Fig. 3. Definition of virtual points.
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where ~d is the discrete gradient operator. Performing the required mass flux correction from the velocity corrections, and
substituting in the discretized continuity equation gives the pressure correction equation as
ttom:Xend/H= 6.5, 8, 9.5, 11, 16, 30, and the solution
XNj

j

q
DV
a0

� �
jð~dP0Þj:~Aj

 !
¼
XNj

j

_mj
� �

; ð22Þ
where ð~dP0Þj:~Aj is obtained using Eq. (20) and
ð~dP0Þj:~Aj ¼
dP0

dn
Aj: ð23Þ
To avoid special treatment for cells near boundary, ghost cells are used outside the physical domain. Therefore, each
boundary face, j, is surrounded by one real cell, P0, and one ghost cell, P1. The ghost cell center is defined as the mirror image
of the virtual point inside the real cell, P00, with respect to the boundary face. With this choice, face center value and face
normal derivative are easily computed to second order as
0to the problem defined in
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/j �
/P1
þ /P00

2
; ð24Þ
@/
@nj
�

/P1
� /P00

j~rP1 �~rP00
j : ð25Þ
Boundary conditions are considered as the governing equations for the ghost cells.
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5. Overall mass balance enforcing

Segregating the solution of the momentum equations from the continuity driven pressure correction equation, gives rise
to a velocity field which may violate the overall mass balance. To avoid this overall mass imbalance in the intermediate solu-
tion, mass balance is enforced by updating the mass flux over the open boundary before solving the pressure correction
equation. The overall mass defect is computed from
_mdefect ¼
Xinflows

i

_mi �
Xoutflows

i

_mi: ð26Þ
The share of each face from this defect is computed in proportion to its face area:
_mc
j ¼

AjPoutflows
i Ai

_mdefect: ð27Þ
This correction excites the pressure correction equation by generating a source term in the equation of the last row of cells
near the outflow boundary, thereby, forcing this equation to balance the overall mass flow. At convergence, this correction
vanishes and does not affect the final solution, but in the course of segregated iterations, it prevents the solution to diverge
because of the overall mass imbalance. With this mass flux correction, boundary conditions of the pressure correction equa-
tion become Neumann condition (dP0/dn = 0).

6. Implicit reconstruction treatment of open boundary condition

The idea of open (free) boundary condition (OBC) [12] is to extend the validity of the numerical discretizations to the
boundary. In mixed finite element, it is applied by evaluating the weak formulation integrals using the shape function data
reconstruction tool, thereby, linking nodal values over the boundary to the domain internal ones. The fully implicit conser-
vative coupled finite volume method of Darbandi et al. [17] uses the same shape function based data reconstruction to link
the boundary nodal values to the domain internal ones. In both cases, all of the velocity components and pressure nodal val-
ues are to be solved together (coupled FVM and mixed FEM procedures).

Here these two constraints are removed using the segregated procedure presented in Section 2 and the gradient based
data reconstruction procedure of Section 3. To mimic what is called fully implicit conservative method by Darbandi et al.
[17], it suffices to implicitly link the value of any variable of interest, /, at ghost cells on open boundaries to the ones of
the corresponding real cells. This effectively provides / or d//dn values for the conservation equations (so the method re-
mains conservative). Of course, this does not guarantee overall mass conservation, because the mass and momentum equa-
tions are not solved together (the issue which was addressed in Section 5).

To implicitly link the value at a ghost cell (PG) over an open boundary, its data is reconstructed from the corresponding
real cell (PR) by
/PG
¼ w0ð~rPG Þ/PR

þ
X

j

wjð~rPG Þ/Pj
; ð28Þ
where G and R are used to represent the ghost and real cells and j runs over the neighbors of the real cell. The equation for the
ghost cell should be rearranged so as to comply with implicit reconstruction. We propose the equation for the ghost cell as:
ð1�wPG Þ/PG
�w0/PR

¼
X
j–G

wj/Pj
; ð29Þ
where w(s) are evaluated with~r ¼~rPG . Eq. (29) is to be used for the ghost cell as its governing equation. Unfortunately, using
Eq. (29), the computational stencil of the ghost cell becomes extended to the neighbors of the corresponding real cell. To
avoid this large computational stencil, the right hand side is treated explicitly (lagging). By lagging, it is meant that the val-
ues of the last outer iteration are used. This does not have any effect on the converged solution but may delay the
convergence.

It is worth noting that the proposed method does not depend on using ghost cells and the same could be done for example
for face centers. This, of course, requires special treatment for near boundary cells (like using one sided derivatives).

Eq. (29) could not be applied for pressure because no pressure equation is used. Pressure correction equation has Neu-
mann boundary condition from the overall mass balance enforcement and could not be used for this purpose. To apply data
reconstruction for pressure, ghost cell values are obtained by gradient based data reconstruction before solving the momen-
tum equations (step (2) of Section 2).

7. Backward facing step at Re = 800

To investigate the validity of the OBC extension to the segregated flow solvers with implicit reconstruction, backward fac-
ing step problem is solved at Re = 800. As a standard test case, researchers on OBC have solved this problem on successively



Table 1
Comparison of the computational costs for different domain cuts. Non-linear convergence criterion:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðD/Þ2

q
< 10�7 �

ffiffiffiffiffiffiffiffiffiffiffiffiP
/2

q
.

Case Xend/H= 30 16 11 9.5 8 6.5

Relative number of outer iterations 100 100 100.12 99.92 95.96 69.21
Relative memory required 100 68.75 36.67 31.67 26.67 21.67
Relative computational time 100 31.1 19.5 11.6 7.94 4.75

X

U
pp

er
 W

al
l P

re
ss

ur
e

0 5 10 15 20 25 30
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

OBC @ X=30H
OBC @ X=16H
OBC @ X=11H
OBC @ X=9.5H
OBC @ X=8H
OBC @ X=6.5H
Darbandi (coupled FVM, 2007)
Gartling (1990)

Fig. 7. Pressure distribution along the upper wall.
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truncated domains to investigate the capabilities of their methods. The problem is defined in Fig. 1(a). The flow enters the
domain via the entrance at upper half of the left side with a parabolic profile defined by u(y) = 6Umean(y/H)(2 � 4y/H) where
the origin for the coordinate system is placed on the center of the left side of the domain. Re number is defined based on the
channel height (H, twice the step height) and mean inlet velocity (Umean).

The fully developed boundary condition generates accurate results when the domain length is larger than Xend = 30H,
where H is the channel height. Papanastasiou et al. [12], using mixed finite element, were able to reduce the domain length
to Xend = 7H without appreciable change upstream. Darbandi et al. [17] used a coupled finite volume method based on the
shape function data reconstruction and were able to place the open boundary at Xend = 6.5H. It is worth noting that the lower
recirculation zone is extended from the step to X � 6.1H and the upper separation bubble extends from X � 4.9–10.5H. With
this in mind, Darbandi et al. [17] used truncated domains with OBC at Xend = 6.5, 8.0, 9.5, 11.0, 16.0 and 30.0H to test their
method. The cut at 11.0H is right after the reattachment point of the upper eddy. The cut at 9.5H is located before the reat-
tachment point of that eddy. The cut at 6.5H is also a sever cut, because it cuts through the upper eddy near its upstream end.
Moreover, it is close to the lower eddy reattachment point.

We follow Darbandi et al. [17] in placing cuts and also use the same uniform mesh to compare our results with theirs. The
mesh is a uniformly distributed one, with 301 � 41 nodes on the longest domain, and the upstream grid point distribution is
not affected with the cutting. It is worth noting that the grid is not clustered near the walls, the inlet or outlet boundaries.
This opposes the good engineering practice in computational fluid dynamics where the mesh is refined near predictable high
gradient zones to capture fine events. Nevertheless, using a uniform grid and obtaining good results, more strongly confirms
the validity of the OBC treatment.

Fig. 4 shows the streamlines for different domain cuts. As is evident, shrinking the domain length does not affect the up-
stream solution. To be more specific, the locations of the reattachment points of the lower and upper eddies are correctly
captured (remained unchanged) with progressively moving the open boundary towards the step, even though it cuts the
upper eddy near its upstream end. The exception is a very small change in the upper eddy separation point. This was also
observed by Darbandi et al. [17] and was removed by refining the grid. Therefore, this behavior is not caused by the OBC but
is related to the grid having insufficient resolution. We also used a finer grid (each cell divided to four cells) and reached to
the same conclusion.
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It is worth noting that shrinking the domain reduced the number of cells inside the domain in linear proportion to the
domain length. This caused the system of equations to become smaller thereby reducing the memory and run time costs.
In comparison, using Xend = 30H required a computational time approximately 21 times that of Xend = 6.5H. The memory costs
scaled linearly with domain length (4.6 times). Table 1 summarizes relative computational costs.

More quantitative comparison is made by extracting velocity and pressure profiles. The location X = 7H is a critical loca-
tion because it is very close to the center of the upper eddy. This section is used by other researchers, e.g. [8,12,17], so com-
parison could be made. Axial velocity and pressure profiles are compared in Figs. 5 and 6. Axial velocity is in good agreement
but pressure is not as good. Because there were different pressure bases, we have moved the base for all of the cases, so that
the pressure at the origin becomes zero. As is evident, the trend for all of the results are the same but values do not agree very
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Table 2
Comparison of the St numbers for the vortex shedding from a circular cylinder.

Manzari [7] He [22] Present full length Present truncated length

StRe=200 0.20 0.1978 0.1980 –
StRe=1000 0.238 0.2392 0.2381 0.2381

OBC @ x = 45
t = 80

O
t
Fig. 11.Streamlines for the �ow passing a cylinder att= 80 ( Re= 1000).
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well. Pressure in the zone of interest (the smallest domain) ranges approximately from 0 to 0.2, so disagreement between the
results of the current work and that of Darbandi et al. [17] is just about 5%. Since Darbandi et al. [17] had used a vertex
centered finite volume method, on the same mesh, they had 2.8% more unknowns. Furthermore, their vertex centered
scheme used two faces per each original-mesh-cell for the new control volumes surrounding each vertex. This gives eight
B C @ x = 3 0
= 8 0
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faces per control volume for the structured mesh used. This is twice the number of faces each control volume has in the cell
centered schemes. Of course, more degrees of freedom and more faces per control volume requires much more computa-
tional cost, which guarantees a more accurate resolution of the flow field. Considering the complex behavior of the flow
at section X = 7H, and the low resolution mesh used in both works, this 5% difference is tolerable. Nevertheless, because
the results for different domain cuts agree well with each other, this is not related to the application of OBC. To investigate
if the mesh resolution is the reason, we divided each computational cell to four cells. The results of this finer mesh are added
to the figure. Since for this finer mesh, profiles match with that of Darbandi et al. [17], the error should be related to the
truncation errors of the numerical scheme. Again, the results of Xend = 30H match with that of Xend = 8H for the finer grid,
which proves that OBC is applied correctly. The same comment applies to the other figures which follow.

Pressure distribution along the upper and lower walls are shown in Figs. 7 and 8. The linear tail portion of the figures
shows the fully developed zone. Cutting the domain even at X = 6.5H does not destroy the quality of the results. Axial velocity
component along the domain centerline is presented in Fig. 9, which shows close agreement with the reference work of [12]
using mixed finite element.

All of the above results were obtained using time step size equal to 1 � 1030 which gives the steady state results. Although
not reported here, the impulsively started backward facing step problem is also solved with time steps ranging from
Dt = 0.001–1 � 1030 on all of the truncated domains. All cases converged to the same steady state result. Unsteady results
were in close match together and to that of the full length domain with convective outflow boundary conditions.

8. Flow passing a circular cylinder

The method described above and applied to the benchmark backward facing step problem is not restricted to the internal
flow problems. Fig. 10 shows the problem definition for the flow passing a circular cylinder. Fluid density is set to unity. The
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mesh is a combination of clustered body conforming quad cells near the cylinder and triangular cells covering the rest of the
domain. The related Strouhal number defined as St = fD/V1 describes the frequency of the vortex shedding.

Table 2 summarizes the results for Re = 200 and 1000. As is evident, St numbers are in close match with Manzari [7] and
He et al. [22] results, which guarantees the well behavior of the method in external flow problems.

To check whether the domain length could be reduced, for Re = 1000, the OBC was moved from Xend = 45 to Xend = 30,
which means that the domain length was shrunk by 25%. As before, the upstream mesh left untouched. The streamlines
for both of the cases are shown in Fig. 11. Both simulation results are overlayed in Fig. 11(c) which shows almost no differ-
ence. To magnify the differences, a close up near the cylinder is chosen. Even with this magnification, the streamlines appear
essentially the same. It is worth noting that the streamlines are drawn for t = 80 which is approximately 16 times the vortex
shedding period. After such a long time, numerical errors may accumulate. Results clearly demonstrate that even after such
an accumulation, the streamlines do not show any meaningful difference. Profiles of the velocity components and pressure at
the positions x = 0.5, 2, 14 at t = 80 are shown in Fig. 12. As is evident, the results for the full length and truncated length
domains are essentially equivalent. St number related to this truncated case is also presented in Table 2 which shows no
difference compared to the full length domain value.

9. Conclusion

From the advent of open (free) boundary conditions they were confined to two restrictions; shape function data recon-
struction and coupled (mixed) pressure–velocity solvers. In this work, both restrictions were removed by implicitly coupling
the open boundary data with domain discretized equations. The key elements were segregating the pressure and velocity
equations (e.g. by means of SIMPLE algorithm), overall mass balance enforcing and lagging the implicit shape function inde-
pendent data reconstruction. As a result, the proposed open boundary treatment could be applied to virtually any polyhedral
grid solver no matter it is coupled or segregated and no matter it uses shape function data reconstruction or not. The com-
patibility of the proposed procedure with previous works which had used coupled solution algorithms and shape function
reconstruction was shown using the backward facing step problem. The tests showed that the method works perfectly.
Applying such kind of boundary condition to the sample backward facing step problem allowed the use of a very smaller
domain (6.5H vs. 30H), which reduced the memory requirement by a factor of 4.6 and speeded up the solution with a factor
of 21. To prove the applicability of the method to external flow problems, flow passing a circular cylinder was also solved.
The domain reduction perfectly works in this case, too.
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